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Observed Impacts Due to Climate Change
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Observed impacts attributed to climate change for

Physical Systems

Rivers, lakes, floods, &
drought

Coastal erosion &

sea level effects

é O
14

Biological Systems

* cgg Glaciers, snow, and ice ‘ {f}) Terrestrial ecosystems a ga Food production

® O widre
@ <> Marine ecosystems l

Human & Managed Systems

Regional-scale impacts
n % Livelihood, health,
. & economics

== Unfilled Symbols = Minor contribution of climate change
Filled Symbols = Major contribution of climate change




‘ipcc

INTERGIVEANMENTAL PanEL 0w ClimaTe change

CLIMATE CHANGE 2014
Synthesis Report

SYNTHESIS REPORT OF THE
FIFTH ASSESSMENT REPORT OF THE
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

<\ =

Taéklz’ng the Challnge of
CLIMATE CHANGE

A NEAR-TERM ACTIONABLE MITIGATION AGENDA

COMISSIONED BY THE REPUBLIC OF NAURU,
CHAIR OF THE ALLIANCE OF SMALL ISLAND
STATES (AOSIS)

-

N A—

i S22

23 SEPTEMBER 2014

e R

Global

Energy
Assessment

Toward a Sustainable Future




The scale of the challenge is beyond
anything we have yet considered.

Tackling the Challenge of
CCCCCCCCCCCCC

> We can and must act boldly now to reduce
greenhouse gas emissions to keep the
political goal of 1.5-2°C goal within reach,

» avoid increased costs of mitigation and
adaptation and technological lock-in,

» provide universal access to modern energy,
and

» realize multiple health and development co-
benefits.



Elements of the 2015 Paris Agreement

Article 2: Limit the global temperature increase to below 2 degrees C, and pursue
efforts to limit the temperature increase to 1.5 degrees C above pre-industrial
levels.

Article 4: Global emissions of greenhouse gases should peak as soon as possible,
and anthropogenic emissions by sources and removal by sinks should balance by
the second half of this century

Article 4.2: Each Party must prepare Nationally Determined Contributions (NDCs)
Article 7: A recognition that there is a significant need for adaptation

Article 9: Developed countries will provide financial resources to assist developing
countries with respect to mitigation and adaptation, with a floor of USS100B per

year

Articles 4.9/14: A global stock take will take place every 5 years, starting in 2023
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Annual global carbon emissions from fossil fuel
combustion and cement production (GtCO, yr)

Current global emissions are
following the IPCC high scenario
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CO, concentration, temperature, and sea level
continue to rise long after emissions are reduced

Magnitude of response Time taken to reach
equilibrium
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The Gap

The INDCs present a real
increase in the ambition level
compared to a projection of
current policies.
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Annual CO, per Capita Emissions
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GHG Emissions [GtCO_eq/yr]

Total Annual Anthropogenic GHG Emissions by Groups of Gases 1970-2010
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Human Perturbation of the Global Carbon Budget
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Temperature anomaly relative to 1861-1880 (°C)
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Global Primary Energy
RCP 2.6 variant: no CCS
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But first, a reminder... about technolo%y
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An Example of a possible transformational
technology
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Supply Technologies Cost Trends

—&— Nuclear US: Average and Minimum/Maximum 1971-1996
= Nuclear US: Single Reactor (No Range) 1971-1996

—a— Nuclear France: Average and Min/Max 1977-1999 Global
o Offshore Wind: All EU project prices 1999-2008 E
100000 - Onshore Wind Denmark: Average costs 1981-2009 nergy

—=— Onshore Wind US: Capacity weighted average price 1984-2010 Assessment
Solar PV Modules: World average prices 1975-2007 toward a Susta T

------ < PV 51 Modules: World average prices (IPCC SRREN) 2003-2010

—=— PV Systems US: Average installation price +/- SD 1998-2009

—— Heatpumps Switzerland: Average cost of 7.6 KW unit 1982-2008

—— Heatpumps Sweden: Average cost of 6.6-8.6 KW unit 1994-2008

—— Ethanol prices Brazil 1975-2011

10000 - et NG - - - - .'
- > H—+ E] | 1_7—5
e
<@
S <+ 10000
o2 f
=
(13 ey
&3
1000 - -
- 1000
100 S S S S S S 100
0.001 0.01 0.1 1 10 1000

Cumulative GW (GWyr) installed/sold/produced

Source: Grubler et al, 2012



Annual Investments in Renwables
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Estimates for mitigation costs vary widely

* Reaching 450ppm CO,eq entails consumption losses of 1.7% (1%-4%) by
2030, 3.4% (2% to 6%) by 2050 and 4.8% (3%-11%) by 2100 relative to
baseline (which grows between 300% to 900% over the course of the
century).

* This is equivalent to a reduction in consumption growth over the 215t
century by about 0.06 (0.04-0.14) percentage points a year (relative to
annualized consumption growth that is between 1.6% and 3% per year).

* Cost estimates exlude benefits of mitigation (reduced impacts from climate
change). They also exclude other benefits (e.g. improvements for local air
quality).

* Cost estimates are based on a series of assumptions.



Measures exist to achleve the substantlal emission reductions required to limit
likely warming to 2°C (40-70% reduction in GHGs globally by 2050 and near
zero or below emissions levels in 2100)
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A combination of adaptation and substantial, sustained reductions in
greenhouse gas emissions can limit climate change risks

3 Implementing reductions in greenhouse gas emissions poses substantial
technological, economic, social, and institutional challenges _—
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Ambitious mitigation is affordable and translates into delayed but not foregone
growth (economic growth reduced by ~ 0.06% / BAU growth 1.6-3%). Estimated
costs do not account for the beneflts of reduced climate change
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Climate Change and Equity

* |ssues of equity, justice, and fairness arise with respect to mitigation
and adaptation:

* Different past and future contributions to the accumulation of GHGs in
the atmosphere

* Varying challenges and circumstances
* Different capacities to address mitigation and adaptation.

* Options for equitable burden-sharing can reduce the potential for the
costs of climate action to constrain development.



Conclusions

* We can and must act boldly to reduce GHG emissions to keep the agreed 1.5
— 2 degree C goal within reach

* The scale of the challenge is beyond anything we have yet considered

 Success is only achievable if we tackle the technological, instritutional,
financial and political inertia now. Our current pathway will not achieve the
deep decarbonization we need

* There is major cost-effective potential to rapidly increase efficency in all
sectors with existing commercially available technologies and use of best
practices, given appropriate policy support

* There is significant scope for early deployment at scale of renewable energy
technologies, if supported with policies (affordable capital, feed-in tariffs,
elimination of fossil fuel subsidies) and increased financing

* An effective price on carbon (to reflect the costs of emissions) would send
the right price signal to drive investments in clean technologies

A systems-wide transformation towards a low-carbon economy requires
policies to catalyze societal behavioural changes

* No more coal-fired power plants should be built without Carbon Capture
and Storage



