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• Expansion planning problems refer to the monetary and unit

investment ragarding energy production or storage.

• Stochasticity is inherent: generation output of renewables, load demand,

climate change, frequency and duration of outages, etc.

• Outage modeling has remarkable impacts on designing systems, for

example, microgrids.

• In most of current studies, a single statistical distribution is used for

outage modeling, like a Poisson process.

• We attempted to relax this assumption by proposing an alternative

outage model.

• The scheme is based on the premise that outages are classified into two

categories: regular and severe.

• A reinforcement learning approach is applied to solve the expansion 

planning problem.

• The objective is to derive the optimal storage expansion plans for a 

specific microgrid in a predetermined time horizon.

Introduction

Nomenclature

MDPs and Reinforcement Learning

The problem is solved using a variant of Q-learning algorithm.

The MDP formulation is provided [1]:

Two outage modeling approaches: Single Poisson Process vs. Superposed Poisson Process

• Single Poisson Process: with rate λ. The number of outages at any time τ follows Poisson

distribution with a rate λτ.

• Superposed Poisson Process: with rate λ=λ1+λ2 where with rate λ1 is a

Poisson process for the regular outage events,. with rate λ2 is a Poisson process for the severe

outage events. Let where Zn is the type of the nth event, .

Fig. 1 Distribution of outage duration using

two different probabilistic modelling

approaches

Numerical assumptions

• The microgrid consists of 2 hospitals, 5 schools and 300 residential facilities

• 4 storage options existing in SU: lithium-ion, lead-acid battery, vanadium redox battery and flywheel storage 

• Options to install at one of three predetermined levels (300, 1000, 3000 kWh)

• The considered stochastic component is the price of the storage unit, modeled by a DTMC
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• In the superposed PP scenario, the vast majority of outages are not long-

lasting and can be handled with a moderate amount of storage capacity.

• This could be the underlying reason behind the research findings presented 

here (timing and level differences).

• The focus of this study is to highlight the importance of analytical and 

accurate outage modeling, specifically tailored for microgrid applications.

• An open research question is how to derive ways to optimally mitigate the 

impacts of catastrophic events.

Discrepancies in both timing and level of investments

• The experiment is implemented twice with identical parameters, except the 

outage model

• Storage unit prices are declining for both scenarios

• Optimal policies differ significantly

• 7000 kWh total storage capacity in Single PP, 4000 kWh in Superposed PP

• First investment happens one period earlier in Single PP scenario

Fig. 2 Optimal policies for both outage models
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Case Study

S State set

A Action set

f Transition function

R Reward function

Stf Timing feature of the state set

Sef External feature of the state set

Sif Internal feature of the state set

K               Number of decision periods

SU Set for available storage units

SC                 Set for characteristics of storage units

SL Set of available storage capacity levels

G Set of facilities in the microgrid

δ Indicator function for lost demand

Cp Critical load factor

Pannuity Annual investment payment for storage units, $

y Number of years in the decision period, yrs

D Load demand, kWh

T Grid outage duration, hrs

CAIDI Average interruption duration, hrs/interruption

VOLL Value of lost load, $/kWh
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   1, 2i

Year 2012 2013 2014 2015 2016 2017

CAIDI (hrs/int) 22.55 1.65 1.42 1.95 1.46 1.70

Table 1 CAIDI data provided by NY State for PSEG-L, years 2012-2017 [2]

Major difference!

• Mean duration is the same

• Distribution is not!

A case study for a microgrid in

Westhamption, NY is conducted [3].

https://arxiv.org/abs/2001.03507

