(Spring 2011)
Thursdays, 9:30am – 11:45am
(NOTE: FIRST CLASS WILL BE 2/3/2011)
Room: Doolittle A102 (Rutgers)
TBD (Princeton)

Rutgers University Course Number: 34:970:670:01
special permission numbers are required.
Email Lynn AstorSga (lastorga@rci.rutgers.edu)

Instructors:
Frank Felder, PhD
Edward J. Bloustein School of Planning and Public Policy
Rutgers University
Office 249
33 Livingston Ave.
New Brunswick, NJ 08901
Voice: 732 932 5680 ext. 670
ffelder@rci.rutgers.edu

Alexander Glaser, PhD
Assistant Professor
Woodrow Wilson School of Public and International Affairs and
Department of Mechanical and Aerospace Engineering
Princeton University
Engineering Quadrangle D434, Olden Street
Princeton, NJ 08544 (USA)
Web: nuclearfutures.princeton.edu
Voice: +1-609-258-5692
aglaser@Princeton.EDU

Course Description
The purpose of this course is to explore in-depth several important energy topics that
inTEGRate engineering, economics and policy. It is designed for doctoral students in the
natural sciences, engineering, and social sciences that have been exposed to a wide-
range of energy topics, perhaps as part of a National Science Foundation IGERT
program, and are interested in further investigating some of those topics. After
reviewing key elements of economic and policy analysis, the course covers the
engineering, economics and policy of the electric power grid, integrated energy
assessment, and energy security.

Topics (Tentative)
1. Week 1: Introduction: Micro-economic and policy analysis (Felder)
 a. Supply and demand
 b. Social welfare and marginal analysis
c. Brief review of optimization

d. Perfect competition and market power

2. Weeks 2-8: The engineering, economics and policy of the electric power grid (Felder)

a. Engineering economics and the time value of money
b. Levelized cost of electricity
c. The economic dispatch problem
d. The unit commitment problem
e. Cost-of-service electric utility regulation and markets
f. De-carbonizing the grid
g. Transportation and the grid
h. Electricity and economic development

3. Weeks 9-10: Integrated Energy Assessment (Glaser)

4. Weeks 11-12: Energy and Security and Course Wrap-up (Glaser and Felder)

Course Texts

F. Felder, *In-depth Introduction to Electricity Markets*, World Scientific, draft

Additional readings will be provide throughout the semester

Websites

Harvard Electricity Policy Group: http://www.hks.harvard.edu/hepg/

Grading

30% weekly problem sets, 20% midterm, 35% final paper and 15% class participation