GO ELECTRIC: Analysis of an All-Electric Transportation Fleet at Rutgers University

RUTGERS 1766 SQUARE SQU

Timothy Lee – Department of Chemistry – Rutgers University

For questions and comments, email: timleelmit@gmail.com

Project Summary:

Using a systematic approach to modeling the current bus transportation system, a streamlined and more efficient bus transportation network is proposed to decrease the size of the Rutgers transportation fleet from ~ 50 biodiesel buses to ~ 40 electric buses. The environmental and financial impact of the transition from biodiesel buses to electric buses is also analyzed and presented in this proposal. Over a 12-year period, switching from the current biodiesel fleet to an all-electric bus fleet can prevent 23,640 metric tons of CO_2 gas emissions and save \$12.4 million.

Part 1: Reducing the Rutgers Transportation Network

Objective: Streamline campus routes to focus solely on intercampus traveling. The following 6 routes for intercampus travel are proposed. These routes can deliver more students between campus centers at a faster rate while reducing the transportation fleet size by 10~12 buses.

Six Proposed Bus Routes

Distribution of Buses in Current and Proposed						
Bus Route	Total Time	# of Buses	Min/Bus			
A	29.5	4	7.4			
В	24.5	6	4.1			
EE	35.0	5	7.0			
F	28.0	6	4.7			
Н	30.5	5	6.1			
LX	27.0	9	3.0			
REXB	32.0	4	8.0			
REXL	32.0	5	6.4			
Total Buses Used:		44				
Main	20.0	8	2.5			
Back	22.5	8	2.8			
F	19.0	4	4.8			
REXB	19.0	4	4.8			
REXL	22.0	4	5.5			
EE	26.5	4	6.6			
Total Buses Used: 32						

Travel Times between Campus Centers							
Campus Centers	Current (mins)	Propose	d (mins)	% Dec	rease	
$BCC \leftrightarrow LSC$	10.6	22.1	7.8	7.5	26.2%	66.0%	
$BCC \leftrightarrow RSC$	14.4	19.6	9.5	11.8	33.9%	39.7%	
$BCC \leftrightarrow DCC$	25.0	20.0	13.8	14.8	45.0%	26.3%	
$RSC \leftrightarrow LSC$	19.0	14.0	10.5	11.3	44.7%	19.2%	
$RSC \leftrightarrow DCC$	15.2	12.7	11.8	10.8	22.5%	15.1%	
LSC ↔ DCC	26.4	18.4	17.5	15.5	33.7%	15.8%	
Max. Students Transported in 30 Mins							

Max. Students Transported in 30 Mins								
Between Campuses		Current	Proposed	% Increase				
Busch	Livi	1102	1700	54.3%				
Busch	CAC	1348	1700	26.1%				
Busch	C/D	563	947	68.4%				
CAC	Livi	1500	1700	13.3%				
CAC	C/D	1607	1627	1.2%				
Livi	C/D	703	818	16.4%				
All Car	npuses	6823	8492	24.5%				

Part 2: Electric Fleet Emission and Financial Analysis

Objective: Transform bus fleet size from ~50 biodiesel New Flyer buses to ~40 electric Proterra buses. This change leads to decreases in greenhouse gas emissions and annual maintenance and fuel costs. The savings over time eventually outmatch initial investment for electric buses.

Greenhouse Gas Emissions

New Flyer Biodiesel Buses $\frac{1.723 \ kg \ CO_2}{1 \ mile} * \frac{38,600 \ mi}{1 \ bus/year} * \frac{1 \ mT}{1000 \ kg} * 85.2\% (B20) = \frac{56.7 \ mT \ CO_2}{1 \ bus/year}$

Proterra Electric Buses $\frac{2.15 \, kWh}{1 \, mi} * \frac{38,600 \, mi}{1 \, bus/year} * \frac{573 \, lbs \, CO_2}{1000 \, kWh} * \frac{1 \, mT}{2204 \, lbs} = \frac{21.6 \, mT \, CO_2}{1 \, bus/year}$

Financial Costs

Summary of Costs of Diesel vs. Electric Buses							
Diesel	Electric	Difference					
16,151	10,789	5,362					
22,388	6,562	15,826					
38,539	17,351	21,188					
621,000	836,000	-215,000					
	Diesel 16,151 22,388 38,539	Diesel Electric 16,151 10,789 22,388 6,562 38,539 17,351					

Pay-back Time for Initial Investment with Differing Vehicle Negotiated Prices							
Pay-back time (years)	8	9	10	11	12	13	14
Savings (\$/year)	-21,188	-21,188	-21,188	-21,188	-21,188	-21,188	-21,188
Interest Rate	2.50%	2.50%	2.50%	2.50%	2.50%	2.50%	2.50%
Vehicle cost difference	\$151,921	\$168,887	\$185,439	\$201,587	\$217,342	\$232,712	\$247,707

CONCLUSION: GO ELECTRIC

Current vs. Proposed Rutgers Bus Fleets						
	Current	Proposed	Difference			
Number of Buses	50 Biodiesel	40 Electric	10			
CO ₂ Emissions (metric tons/year)	2,833	863	1,970			
Annual Fuel Costs (\$/year)	807,550	431,560	375,990			
Annual Maintenance Costs (\$/year)	1,119,400	262,480	856,920			
Combined Annual Costs (\$/year)	1,926,950	694,040	1,232,910			
Individual Vehicle Cost (\$/bus)	621,000	836,000	-215,000			
Total 12-Year Emissions (metric tons)	33,996	10,356	23,640			
Total 12-Year Costs (\$)	23,123,400	8,328,480	14,794,920			
Total Vehicle Costs (\$)	31,050,000	33,440,000	-2,390,000			
Total Costs (\$)	54,173,400	41,768,480	12,404,920			